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Abstract. We investigate the critical relaxation of dilute Ising systems starting from a 
macroscopically prepared initial state with short-range correlations. Using the methods of 
renormalized field theory we calculate the exponent 8' which describes the initial increase of 
the magnetization to second order in &. where E = 4 - d .  Since computer simulations of the 
dilute Ising model have shown that a large part of the critical region is governed by crossover 
phenomena, we also discuss the influence of the slow crossover on the relaxation. 

1. Introduction 

In recent years the growth of correlations which governs the initial stage of the critical 
relaxation has been studied for a number of dynamic universality classes [ 1,2]. Of special 
interest are thermodynamic systems with a non-conserved order parameter whose critical 
dynamics may be described by model A or model C in the terminology of Halperin et ai 
[3]. When such a system is quenched from a high temperature 5 >> T, to the critical point, 
the relaxation displays universal scaling behaviour which is characterized by a new critical 
exponent 8' already at (macroscopically) short times. 

A remarkable property of the relaxation process is the increase of a non-zero initial 
magnetization MO at short times t c tM ,  where tM - The crossover from 
the initial rise to the well known decay M ( t )  - t-o/(uz) for t + 00 can be described by the 
scaling form 

(1) M ( t )  = MO t' F( ta '+Bi(uz)M~)  

where 
for x + 0 

l/x f o r x - t  CO 
F ( x )  - 

For the (pure) Ising model the scaling function F has been calculated by one of us to first 
order in E = 4 - d [4], where d is the spatial dimension. A detailed discussion of finite 
size effects and the relaxation away from criticality is given in [ 5 ] . ~  

For king systems with model-A dynamics the predictions obtained by renormalization 
group calculations have been successfully checked in simulations [6-8]. Owing to the small 
correlation length at the beginning of the relaxation these simulations require less effort than 
numerical studies of equilibrium dynamics. This fact has also been used to develop new 
methods to measure both dynamic and static critical exponents [9]. 

In this paper we apply field theory and the renormalization group to study the relaxation 
of dilute Ising systems with a non-conserved order parameter (model A). As a peculiarity 
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of the dilute Ising model the renormalization group possesses no fixed point of the order 6. 
We therefore follow an idea by Khmelnitskii [lo] and perform a .&expansion to calculate 
the exponent 8’. It has already been shown by Kissner that 8’ vanishes at first order in 
fi  [ 111. In section 3 we extend the calculation to two-loop order and obtain the non-trivial 
result 8’ = 0.08686 + O ( d 2 ) .  

Extensive computer simulations of the dilute Ising model give evidence for a slow 
crossover to universal criticality [12] (see also [13]). Therefore, asymptotic scaling 
behaviour with universal critical exponents in general occurs only in the limit of extremely 
large length and time scales. In section 4 we discuss the influence of crossover phenomena 
on the critical relaxation. The preasymptotic behaviour observed in simulations is 
characterized by effective exponents which depend on the concentration p of magnetic 
sites. In a recent publication we have shown how the non-universal exponents are related 
to regions in the space of coupling constants away from the fixed point [14]. Here we 
apply this method to estimate non-universal values of 8‘ which may be measured in future 
simulations. 

K Oerding and H K Janssen 

2. The model 

The dynamics of a non-conserved order parameter field s in a system with quenched random 
impurities can be expressed in the form of the Langevin-equation 

with the Landau-Ginzburg Hamiltonian 

X ~ [ s J = / d ‘ r  [ f ( ~ t @ ) ~ ’ + i ( V ~ ) * + - - g s ~  4! I 1  . (4) 

Here @ is a quenched (rimeindependent) Gaussian random field with zero mean and the 
correlations 

@(T)@(T’) = fS(T - T’). (5)  
The bar denotes the average over disorder. The Gaussian random force 
effect of microscopic degrees of freedom with short relaxation times: 

( T ( T .  t ) [ (T’ ,  t ’))  = 2A8@ - r’)s(c - C’). 

in (3) models the 

(6) 
The angular brackets (. . .) indicate an average with respect to thermal noise. 

In this paper we consider the case of a one-component order parameter (universality 
class of the Ising model) since the specific heat exponent 01 of the pure king model is 
positive ford = 3. For systems with negative 01 (like the three-dimensional n-vector model 
for II 2) random impurities are irrelevant for the asymptotic critical behaviour [15]. 

A field theoretic formulation of the dynamics which is equivalent to the Langevin 
equation (3) is defined by the stochastic functional [4,16,17,18] 

where the response field jr has been introduced to average over thermal noise. 
The Langevin equation (3) and the dynamic functional (7) allow us to investigate the 

equilibrium critical dynamics of disordered Ising systems. Since we are interested in the 
relaxation from a macroscopically prepared non-equilibrium initial state we additionally 



Relaxation in dilute king systems 4213 

have to specify the distribution of the initial condition s ~ ( T )  = s ( r ,  t = 0). A quench from 
a high temperature TO >> T, at the time t = 0 corresponds to the distribution 

(8) 1 P&] o( exp -- d'r (so(r) - MO)' 
where MO is a homogeneous initial magnetization and Q' measures the width of the initial 
distribution. By naive dimensional analysis one finds TO - p2 ( p  is an external momentum 
scale). Thus 5' is an irrelevant parameter in the renormalization group sense. The fixed 
point zo = 03 corresponds to a sharp preparation of the initial value so(r) = MO. 

Correlation and response functions are computed by functional integrals of the form 

[ ?s  

(s(T,  t )  . . .) = DIP: S,S; sols(r, t ) .  . . e x p ( - ~ @ [ ~ ,  SI~P~[S~I . (9) I 
We perform the average over disorder at the beginning of the calculations [I91 

\ D[PI exp(-z#[S- SI) = exp(-z#[s, SI) = exp(-z[s, 31) (10) 

and obtain the @-independent stochastic functional 

(11) 

In the next section we will study the Green functions of this field theory by an expansion 
around the Gaussian model (f = g = 0). The propagator and the correlator of the 'free' 
field theory are 

G,(t - t') = ddr exp(-iq. T ) ( s ( T ,  t )S(O,  t ' ) ) ( O )  

(12) 

s 
s 
= exp(-A(r + q')(t - t')) for t > t' 

~ and 

Cq(t, t') = d"r (s(T, t)s(r', t'))"' = C$Q)(t - t') + C:)(t, t') (13) 

respectively. Here 

cf@(t - t') = ~ 1 exp (-A@ + q 2 )it - t'l) r+q2  
is the equilibrium correlator and 

114) 

is a non-equilibrium contribution which results from the initial conditions. 

3. Renormalization group analysis 

In thksection we use the methods of renormalized field theory to investigate the scaling 
behaviour of non-equilibrium response and correlation functions. For a more detailed 
exposition of the procedure the reader is referred to [4]. 
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The Green functions G t N  are defined as cumulans of (L + A )  response fields (e of 
them at time I = 0) and N order parameter fields, 

(Here and in what follows the brackets are meant to include the average over disorder.) 
For TO = 00 and MO = 0 the initial order parameter field is sharply defined as SO@) = 0. 
Insertions of the time derivative &(r) = &s(r,  t)lt=o in Green functions are related to the 
response field &(r) by [4] 

S ~ ( T )  = 2A$o(~). (17) 

SO(T) = r;%&-). (18) 

The functions G i , N  may be calculated by a perturbation expansion in the coupling 
coefficients f and g. We use dimensional regularization to calculate otherwise divergent 
integrals and absorb the remaining poles in E into reparametrizations of coupling coefficients 
and fields. The required renormalizations are 

For finite r0 insertions of the field SO(T) are non-zero, and we have 

s + I = 2;Jzs 

f --f p = s,-~(z"/Z,;)vp~ 

0 1/2- S + B = Z i  s 

5 + t = (Zr /Zs )7  A -+ = (Z,/Z:)"'A (19) 

g -+ 2 = S,-l(Z,/Z,Z)up' 

where p is an external momentum scale and Sd denotes the surface area of the d-dimensional 
unit sphere divided by (2r )d .  The 2-factors in (19) have been calculated by Lawrie and 
Prudnikov to two-loop order [20] (see also [14]). 

Since the non-equilibrium initial conditions break the translational invariance with 
respect to time the initial response field requires an additional renormalization 

(20) 
The new 2-factor 20 serves to cancel the divergencies in response functions with insertions 
of the field $0, e.g. 

1/2- ~~ so . io + to = (ZoZ:) 

( z ~ z ; z ~ ) - ~ ' ~ ~ ~ , ~ ( T ,  t) = finite. 

To two-loop order we find 
U U 2  uv 
26 4€2 4€2 

20 = 1 + - + - [2+ (In2 - 4) E ]  + - [-6+ @ + I n 2  - &ln(Z+&)) E ]  

(21) 
Since the bare Green functions are independent of the momentum scale p 

introduced in (19), the p-derivatives at fixed bare parameters are zero: 

Thus (for MO = 0) the renormalized Green functions satisfy the renormalization group 
equation (RCE) 

[pa, + a l a A  + w a r  + a a .  + B.a, + $i(vo + E) 
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= p$[,u and @” = p$lou and the Wilson with the Callan-Symanzik functions 
functions 

Using equation (21)  the new Wilson function yo can be calculated to two-loop order 

y o ( u , u ) = - - 1 u - - u 2 ( 2 ~ n ~ - ~ ) - - u v ( 2 + 1 n 2 - - ~ n ( 2 + d ? ) ) .  (25) 

For the discussion of the decay of the initial magnetization MO we will also require KA 
which is given by 

(26) KA(U, U) = U + g(61n - 1)u2 - auu + 5 2  . 
The other Wilson functions have been obtained in the minimal renormalization scheme to 
three-loop order [14] and directly in d = 3 to four-loop order 1211. 

The general solution of the RGE may be written in the form 

G4 ({z, T ,  t ) ;  C,  U ,  U ,  1; p)  = Xo( l )  i/z ( x - ( l ) l d + Z ) ( i + l j ) / 2 ( ~ , ~ ( ! - ) l d - 2 ) N / Z  I 
N , N  

XG$,,({lz, IT ,  YA(!-)12t); YT(l)l-2T,’i(l) ,  a(!-), h; F )  (27) 
where the characteristics X J l )  and Yb(l) are solutions of the ordinary differential equations 

d d 
dl dl 
d d -  
dl 

1- In&(!-) = yu(c( l ) ,  a(l)) 1- In Yb(l) = K b ( c ( l ) ,  a([)) 

(28) L-UO = P a ( W ,  W) l;ii U@) = 8,(W, NO) 
xa(1) = Yb(1) = 1 i ( 1 )  ; ( I )  = U  

where a = 0, d. s and b = h, 5.  

Equation (27) allows us to study the scaling behaviour of Green functions on large 
length and time scales. For this purpose one is interested in the limit 1 + 0 which is 
governed by the infra-red-stable fixed point 

U+ = - L ( 1 1 0  + 6 3 ( ( 3 ) ) s  + O ( C ) / ~ )  
53 532 

(where < denotes Riemann’s (-function). The critical exponents qo, fj, q, U, and z are the 
fixed-point values of the Wilson functions yo, E, xv, 1/(2 - K ~ ) ,  and 2 + KA, respectively, 
and the characteristics show the limiting behaviour 

I X,(l)  Y X ; P  x,  N x p  X,? N x y  
i (30) 

Y, (1) N Y : W ”  YA(l) 2: Y:!‘-’ 

for I + 0 with the non-universal scaling factors X;,  X ; ,  X:, Y;. and Y; = ( X ; / X ; ) 1 / 2 .  
The new exponent qo and the dynamic scaling exponent z are given by 

= -0.673&(1 - 0.444&) + O(c3”) (31) 
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and 
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= 2 + 0.336,&(1 - 0.932&) + O ( E ~ / ~ )  (32) 
respectively. Setting c = 1 we obtain the estimates qo % -0.374 and z YN 2.023. The 
large coefficient of the O(G) contribution in equation (32) suggests that the result obtained 
by the naive @-expansion probably~is not very accurate. In [14] we have improved the 
three-loop expansion of the ,&functions by a Pad&-Bore1 approximation and used the result 
to calculate the fixed point (U+, U,) = (1.424.0.144). Inserting these values into KA we 
obtain z = 2,180.. A direct two-loop calculation in three dimensions yields z = 2.237 [22]. 

In computer simulations of non-equilibrium critical relaxation one usually studies the 
decay of an initial magnetization MO [7] or autocorrelation and response functions related 
to G& [6,8]. At the fixed point displays the scaling behaviour 

G h , ( ~ , t ; r , h ; p )  =r-d+ze'F(rr/r ,rrY)  (33) 

where 

8' = 4 7 0  + ri + M 2 Z )  (34) 

= 0.08686 + O ( e 3 9  (35) 

= & ~ ( 3 - 6 6 n 2 + 8 1 n 3 - 2 ~ l n ( 2 + ~ ) ) + O ( c 3 ~ 2 )  

If we allow for a non-zero initial magnetization MO the time dependence of the order 
parameter can be calculated by an expansion in powers of MO: 

M(r, MO; r,  U, U ,  A; /I) = - / ddrl . . . ddrN G&([rJ,  f ;  r,  U ,  U, A; p ) M t .  N !  

Solving the RGE for M ( t )  yields 

s m l  
(36) 

N = l  

M ( r ,  M ~ ;  r ,  u ,  u, A; p )  = ( x ( l ) ) 1 / 2 ~ - 2 ) / 2  

xM(yA(I)12t, (xdl)xO(l)) 1/21-(d-2)/2Mo; Y z ( l ) l4 r ,  E@), ; ( I ) ,  & p )  (37) 

and the asymptotic scaling form 

M ( t ,  MO; 5, U, U ,  h; p )  M O ~ ~ ' F ~ ( M O ~ ~ ' + ~ ' ( " ~ ) ,  tr"') (38) 

where F,&, y )  remains finite and non-zero for x ,  y + 0. For the pure model A the long 
time behaviour of the magnetization is discussed in reference 151. We expect the general 
scaling arguments used therein to apply also to systems with random impurities. 

4. Crossover phenomena and effective exponents 

Since the asymptotic power laws (30) are only valid for small I the universal scaling 
behaviour of Green functions is restricted to the limit of large length and time scales. Here 
the precise meaning of 'large' depends on the system under consideration. In computer 
simulations of the dilute king model the linear size L of the system is an additional 
length scale which controls the approach to the asymptotic scaling regime. While the pure 
system already reaches the finite-size scaling limit at small system sizes, the disordered 
king model requires considerably larger values of L to display universal behaviour. Monte 
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Carlo simulations of systems up to L = 60 at various concentrations produced apparently 
concentration dependent critical exponents [12]. 

Very recently we have shown how these crossover effects can be explained in the 
framework of the renormalization group [14]. The numerical solution of the flow 
equations (28) shows that the scale-dependent coupling 'constants ( i ( l ) ,  i(l)) first approach 
a one-dimensional submanifold of the (U. u)-space before they move towards the infra- 
red-stable fixed point (u., !,). This suggests that the slow crossover observed in the 
simulations reflects the behaviour of the renormalization group transformation along this 
'slow' manifold. In [I41 we have used this idea to identify coupling coefficients (U,,, U,,) 
for each concentration p E [0.6,0.8,0.9S,0.9), which reproduce the exponents udf(p) and 
ye&) found in the simulations by Heuer 1121 with satisfactory accuracy. 

We expect that for short times t after the quench the relaxation is affected by crossover 
phenomena characterized by non-asymptotic values of the exponent 8'. Since the correlation 
length is small at the beginning of the relaxation finite size effects are negligible up to times 
of the order t~ - L' [SI. For t c Q the time scale t controls the approach to the asymptotic 
scaling limit.  to obtain estimates for the dilution-dependent effective exponent in a cubic 
lattice  we^ have calculated the function 

e'(u, U) = -(v0(~, U) + IXU,  U) + V ( U ,  u ) ) / ( z z ( u ,  U)) (39) 

= i u  - + U  +& - 1 ) u 2  

+$ (7 + 21n 2 - 2 f i  In(2 + A)) U U - f U' + O(three-loop) (40) 
for the coupling coefficients ( u p ,  U,,) found in [14]. The results given in table 1 show that 
the effective 6" increases for decreasing concentration p. For the pure system ( p  = 1) our 
result (e' FZ: 0.1 1) can he compared with the values 8' = 0.102(2) [71 and 8' = 0.104(3) [8] 
obtained in Monte-Carlo simulations. 

Table 1. The concenttation-dependent effective exponent 0' calculated with me effective 
coupling consfants obtained in [14]. The infra-red-stable fixed point of the mdomly diluted lsing 
model is labelled by (R). The exponents have been calculated (a) by the two-loop expansion (40). 
and (b) directly by equation (39) using thetwo-loop expressions for qo, f .  q, and L. 

P up up e'(a) 8' (b) 

(R) 1.424 0.144 0.121 0.118 
1.0 0.982 0 0.111 0.110 
0.95 1.182 0.066 0.115 0.113 
0.9 ~ 1.375 0.128 ~ 0.119. 0.117 

0.8 1.647 0.216 0.127 0.122 

0.6 ' 2.353 0,444 0.158 0.134 

5. Summary 

In this paper we have studied the relaxation of dilute king systems with a non-conserved 
order parameter after a quench from a high temperature TO >> Tc to the critical temperature 
T,. The relaxation displays the typical short-time scaling behaviour associated with the 
growth of correlations, which has already been observed in pure systems. To show that 
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a non-zero initial magnetization increases during the initial stage of the relaxation it was 
necessary to calculate the exponent 8' to second order in &. 

Due to the slow crossover in dilute king systems, it is probably difficult to measure the 
asymptotic exponent 0' in simulations, or real experiments. The pre-asymptotic behaviour 
can be described by effective coupling coefficients that differ from their fixed-point values. 
We have used the effective coupling constants calculated in [I41 to obtain estimates for 
dilution-dependent values of the exponent 8' which may be measured in future simulations 
of the relaxation. Since these values are non-universal quantities they only apply to a 
particular microscopic realization of the king model (they depend, e.g.. on the coordination 
number of the lattice as well as on the dilution) and a limited range of length and time 
scales. The exponents given in table 1 refer to the cubic lattice with site disorder used 
by Heuer 1121. For t + 00 in an infinite system the relaxation is governed by universal 
exponents for all concentrations above the percolation threshold. 
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